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Dispersion corrections to the atomic scattering factors for the copper K edge

have been measured by a new technique, Fresnel diffraction. Fresnel diffraction

fringes were measured at several sample±detector distances as a function of

energy across the copper K-absorption edge. The dispersion corrections were

obtained from optimizing a least-squares ®t of Fresnel fringe simulations to the

measured data.

1. Introduction

X-ray dispersion corrections to the atomic scattering factors,

sometimes called HoÈ nl corrections, or anomalous-scattering

terms are indispensable for any quantitative X-ray diffraction

analysis. Atomic X-ray scattering factors are usually written as

f �q;E� � f0�q� � f 0�q;E� � if 00�q;E�; �1�

where f 0 and f 00 are the dispersion corrections. Atomic scat-

tering factors are a measure of the scattering amplitude of the

atom with respect to a single free electron. In general, the

scattering factor depends on both the energy of the incident

radiation, E, and the scattering vector, q � kout ÿ kin, where

kin and kout are the incident and scattered wavevectors,

respectively. jqj � 4� sin �=�, where 2� is the scattering angle

and � is the wavelength. In the non-relativistic regime, for q = 0,

f0 is the number of electrons in the atom, Z. f 0 and f 00 depend

on the atomic absorption frequencies and are related to one

another by the Kramers±Kronig relation:

f 0�!� � 2

�
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where P denotes the Cauchy principal value of the integral

and E � h- !.

The atomic form factors are related to the material's index

of refraction, n � 1ÿ �� i�. For a single element, this is given

by

� � re�
2NA��f0 � f 0�

2�A
; � � re�

2NA�f 00

2�A
; �3�

where re is the classical electron radius, � is the mass density,

NA is the Avagadro number and A is the atomic mass.

The imaginary part of the index of refraction is related to

the material's linear absorption coef®cient:

� � 4��=�: �4�

The real part of the index of refraction is related to the phase

velocity of the X-rays. Therefore, techniques that are sensitive

to the material's index of refraction can be used to measure

dispersion corrections.

Since the electrons in the atom are bound and not free, it

can be expected that f0 should be slightly less than Z. Using

relativistic multipole calculations, it can be shown (Smith,

1987) that the reduction in scattering power, expressed in

electrons, is ÿEtot=mc2, where Etot is the total ground-state

binding energy of all the electrons in the atom. Thus, even in

the limit of frequencies much higher than the absorption

frequencies, the q = 0 scattering factor is slightly less than Z.

Although this relativistic correction term is independent of

the X-ray energy (non-dispersive), experimentalists usually

incorporate it into their stated values of f 0, de®ning the

forward-scattering factor as: f � Z � f 0 � if 00 and referring to

f 0 as the real part of the dispersion correction. We follow the

same convention in this paper. In our case, for copper, the

relativistic correction is 0.085 electron (Kissel & Pratt, 1990)

and is small compared to our measurement errors.

Dispersion correction measurements can be divided into

two types: (i) measurements at ®nite q, and (ii) measurements

in the forward direction, q = 0. The techniques that measure

the dispersion corrections at ®nite q include absolute

diffracted intensity (Freund, 1975; Suortti et al., 1985) and

PendelloÈsung (Takama & Sato, 1982) measurements. They rely

on the fact that the scattered intensity and the PendelloÈsung

fringes depend on the structure factor, which, in turn, depends

on the atomic scattering factors. One result from these

measurements is that no de®nite q dependence has been

found in the dispersion corrections (Creagh, 1999). This is

consistent with the fact that the largest contribution to the

dispersion correction is from the K-shell electrons, which are

close to the nucleus and spherically symmetric. In the q = 0

forward direction, dispersion corrections have been measured

by interferometry (Creagh & Hart, 1970; Cusatis & Hart, 1977;



Hart & Siddons, 1981; Bonse et al., 1982, Siddons & Hart, 1983;

Bonse et al., 1983a,b; Bonse & Hartmann-Lotsch, 1984; Begum

et al., 1986; Bonse et al., 1989), re¯ectivity (Stanglmeier et al.,

1992), angular deviations from prisms (Deutsch & Hart, 1984;

Fontaine et al., 1985) and absorption (Dreier et al., 1984; Hoyt

et al., 1984). Review articles have been written by Lengeler

(1994) and Creagh (1999).

In this paper, we describe a new method of measuring the

q � 0 dispersion corrections, namely by Fresnel diffraction.

The wave transmitted through a sample is sensitive to the

sample's index of refraction. In particular, the phase of the

transmitted wavefront will be affected by the real part of the

index of refraction, while the amplitude will be affected by the

imaginary part. For a coherent beam, the various components

of this distorted and attenuated wavefront will interfere and,

after propagation over a ®nite distance, produce Fresnel

fringes. Given a geometrically simple sample, we show that it is

possible to retrieve the material's index of refraction from its

Fresnel diffraction patterns. As in interferometry, this tech-

nique measures both the real and imaginary parts of the

atomic form factors simultaneously.

2. Theory

The interaction of X-rays with matter is very weak and, away

from Bragg conditions, the diffraction angles are very small

(~10ÿ6). Thus, provided the sample is not too thick, we can

neglect the lateral shift suffered by the X-ray beam in the

sample. Assuming the X-rays travel in the z direction, the

transmission function of a one-dimensional object can be

written as:

T�x� � A�x� exp�i'�x��; �5�

where the amplitude A(x) is related to the linear absorption

coef®cient �:

A�x� � exp�ÿB�x��
B�x� � �2�=�� R ��x; z� dz � R ���x; z�=2� dz;

�6�

and the phase '�x� is given by

'�x� � �2�=�� R �1ÿ ��x; z�� dz � '0 ÿ �2�=��
R
��x; z� dz;

�7�
where '0 is a constant that represents the accumulated phase

in the absence of the sample and can be neglected. B and ' are

therefore directly related to f 00 and f 0, respectively. The

transmitted wave immediately after the sample can be written

as:

 0�x� �  inc�x�T�x�; �8�

where  inc is the incident wave and T(x) is the transmission

function characterizing the specimen. At a distance L from the

sample, the wave can be calculated using the Fresnel

approximation to the Huygens±Kirchhoff integral (Born &

Wolf, 1999):

 L�x� �
exp�ikL�
�i�L�1=2

Z
 0�x0� exp�ik�xÿ x0�2=2L� dx0; �9�

where k � 2�=� is the vacuum wavenumber. Thus, given the

material's index of refraction and the sample geometry, one

can calculate the diffraction pattern at a distance L from the

sample. In this experiment, we use a simple object, namely a

copper ®ber, to measure the dispersion corrections over the

K edge.

3. Experimental set-up

The experiments were performed at the ID19 beamline at

the European Synchrotron Radiation Facility (ESRF). The

experimental station on this beamline, which is primarily used

for X-ray imaging, is 145 m from the source and, thus, the

beam has excellent lateral coherence. At ID19, the source

sizes are 25 mm in the vertical direction and 125 mm in the

horizontal direction (FWHM). At 145 m from the source, the

lateral coherence lengths are 127 mm vertically and 25 mm

horizontally for 9 keV X-rays. With a high-quality X-ray

detector, it is possible to resolve the ®ne details of fringes due

to Fresnel diffraction. The detection system consists of an

X-ray scintillator (europium-doped Lu3Al5O12 single crystal),

a 20�microscope objective with 0.4 numerical aperture, and a

cooled CCD camera with 2048 � 2048 pixels and a dynamic

range of 14 bits. The demagni®ed CCD pixel size is 0.69 mm,

and the resolution of the detection system is about 1.5 mm.

Diffraction patterns from a 10 mm-diameter copper ®ber (10%

tolerance, purchased from Goodfellow, Great Britain) were

recorded at ten different sample±detector distances (9.4±

886.4 mm). The copper ®ber was held with its axis approxi-

mately horizontal to take advantage of the higher beam

coherence in the vertical direction. Images with and without

the ®ber, together with images without the X-ray beam (`dark

®eld') were recorded. A `¯at-®elded' image, Imeas�x; y�, is

obtained by:

Imeas�x; y� � �I�sample� ÿ I�dark��=�I�nosample� ÿ I�dark��:
�10�

Figs. 1(a) and 1(b) show a section of the ¯at-®eld-corrected

fringe patterns for 8975 eV, taken at 9.4 and 886.4 mm from

the sample, respectively. The sheer number of diffraction

fringes testi®es to the high degree of beam coherence and the

excellent detector system. Clean sections of the Fresnel fringe

patterns, free of spurious features due to dust or scratches

coming from the monochromator crystals or vacuum windows

upstream, or singularities due to the scintillator crystal, were

selected by inspection and averaged over 200 pixels in the

dimension parallel to the ®ber axis for better statistics. The

averaged data are therefore represented as I�x�meas with a

corresponding standard deviation ��x�meas. Each fringe

pattern consists of 414 data points. The measurements were

performed for 20 different energies across the Cu K edge,

from 8975 to 9045 eV. The energy was selected by a silicon

double-crystal monochromator operating in the vertical plane

for the 111 re¯ection in Bragg geometry.
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4. Data analysis

In theory, it should be possible to obtain the index of refrac-

tion directly by phase reconstruction of the fringe patterns

(Cloetens et al., 1997). However, owing to the relatively large

phase jumps involved, this approach was not successful.

Instead, we simulated the diffraction patterns and performed a

least-squares minimization on the difference between the

measured and simulated data.

The simulation method is described by Cloetens (1999) and

only the essential aspects will be mentioned here. For the

incident wave, we used the parabolic approximation to a

spherical wave. At a distance L downstream of the sample, the

calculated detected intensity is:

I�x�calc � j L�x�j2 � Reff�x�; �11�

where Reff is an effective resolution function that includes the

detector resolution and the beam degree of coherence, and *

denotes convolution. In practice, the convolutions in (9) and

(11) are not calculated in direct space but rather via an

equivalent multiplication in reciprocal space. Icalc depends on

several parameters: ®ber radius (r), wavelength (�), distance

(L), f 0 (via the minimum value of the phase at the centre of the

®ber, 'max � ÿ4�r�=�), f 00 (via the maximum attenuation,

Bmax � 4�r�=�) and Reff . For each energy, ten measurements

at different distances L were made by translating the detector.

Owing to the imperfections of the detector translation stage,

the measurements taken at different sample±detector

distances L were misaligned relative to one another. The gross

misalignments were handled by relative translations of the

data so that the centers of the fringe patterns were within one

pixel of one another. The ®ner misalignment was handled by

introducing an additional parameter, xoffset, for each data set

in the simulation.

The data-®tting procedure involves minimization of the chi-

square sum:

�2 �
X Icalc ÿ Imeas

�meas

� �2

: �12�

In order to avoid being trapped in a local minimum, the

minimization was done in stages and iteratively. Brie¯y, for

each energy, the ®tting procedure was performed as follows:

The ®rst ®ts were done using r, Bmax, 'max and an average

xoffset as the ®t parameters. In order to compensate for some

¯uctuations in the average intensity, the measured data were

normalized such that the intensity in the wings of the data

(where there are no fringes) match that of this initial ®t. For

the ®tting procedure, the inital values used for all the energies

are: 'max � ÿ8:0, Bmax � 0:5, r � 5 mm (manufacturer speci-

®cation), � from the beamline monochromator calibration, L

was measured and Reff was measured several months prior to

the experiment at an X-ray energy of 20 keV. Next, using these

results, ®ts were done to obtain the optimum individual xoffset

parameter for each fringe pattern. The ®nal ®ts involve only

two ®tting parameters, 'max and Bmax. This was done for

different values of r so that the optimum value of r could be

determined from the chi-square when summed over all the

energies. A ®nal value of r = 5.3 mm was obtained. The opti-

mized values of 'max and Bmax were then used to optimize the

resolution function Reff , described as a sum of four Gaussians,

and this process was performed iteratively. When minimizing

the chi-square over all the energies, data from energies 9001

and 9003 eV were omitted. The images from these two ener-

gies were of poor quality owing to the emergence of additional

structures on the scintillator. The reason for this is as yet

unknown, but we suspect that it has to do with Bragg

diffraction within the scintillator at those particular energies.

Fig. 2 shows a typical ®t to the data. The reduced chi-square

(�2
�) value for the entire data set, summed over all the ener-

gies, is 0.8. Individual reduced chi-square values for each

fringe pattern (except 9001 and 9003 eV) vary from 0.4 to 2.1.

After the optimization was done, we noticed that the f 0 and f 00

Figure 1
Flat-®elded image of copper ®ber, E = 8975 eV. (a) L = 9.4 mm and (b)
L = 886.4 mm. The diameter of the ®ber is approximately 10 mm. The
demagni®ed CCD pixel size is 0.69 mm.



results of our measurements appear to be shifted to the low-

energy side by about 5 eV relative to the literature. This

suggests that there was an error in the calibration of the

beamline monochromator, which was performed by the Bond

method (Bond, 1960). The optimization process was then

repeated using the corrected (beamline calibration energy

+5 eV) energies. The beam energies stated in this paper are

the corrected values.

It is important to estimate the errors on the measured

dispersion corrections. Chi-square sums around the best

values of f 0 and f 00 were calculated. The error in the ®tted

parameters due to the chi-square minimization procedure can

be estimated graphically or analytically by (Bevington &

Robinson, 1992)

�� f 0fit�2 � 2
@2�2

@f 02

� �ÿ1

; �13�

with a similar expression for f 00. Another source of error comes

from uncertainty in the optimized values of r, �, L, Reff and

xoffset, which were held constant in the ®nal ®t of 'max and

Bmax. Errors in the values of the dispersion corrections from

uncertainty in these variables were approximated by:

�� f 0par�2 �
@f 0

@r
�r

� �2

� @f 0

@�
��

� �2

� @f 0

@L
�L

� �2

� @f 0

@Reff

�Reff

� �2

� @f 0

@xoffset
�xoffset

� �2

; �14�

with a similar expression for f 00. �� was estimated to be

0.00046 AÊ (3 eV in energy) from the bandwidth of the

monochromatic beam and the accuracy by which we can

determine the absorption edge from the data. �L was esti-

mated to be 0.5 mm from the measurements of the sample-to-

detector distance. The contribution to the error from the

effective resolution function Reff was obtained from the

difference between the dispersion values resulting from an

optimized Reff and from the original value of Reff that was

measured several months prior to this experiment. Note that

Reff is a function (sum of four Gaussians), and the notation

�Reff in (14) denotes the change in the parameters (ampli-

tudes and widths of the Gaussians) of the function but not the

function itself. The contribution from the xoffset parameter

was obtained from the difference between the dispersion

values resulting from an optimized xoffset and from not using

them at all (by setting xoffset = 0). We estimate �r from the

variance of the optimum radius obtained from the initial ®ts at

different energies where r was a ®t parameter instead of a

constant. From the ®ts, r = 5.30�0.06 mm. After the experi-

ment, the diameter of the ®ber was measured with a scanning

electron microscope (SEM). The SEM measurements con®rm

our best-®t results for the radius and also con®rm that the
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Figure 2
A typical example of the ®t between the experimental data and the
simulation. This is for E = 8975 eV and L = 886.4 mm.

Figure 4
Plot of f 00 versus energy for the Cu K edge. The data from Begum et al.
(1986) was by interferometry, Bonse et al. (1982) and Dreier et al. (1984)
by absorption, and Stanglmeier et al. (1992) was by re¯ection. The error
bars correspond to one standard deviation.

Figure 3
Plot of f 0 versus energy for the Cu K edge. The data from Begum et al.
(1986) was by interferometry, Bonse et al. (1982) and Dreier et al. (1984)
by Kramers±Kronig transformation of absorption data, and Stanglmeier
et al. (1992) was by re¯ection. The error bars correspond to one standard
deviation.
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sample was indeed cylindrical. A summary of the average

errors from each of these parameters is listed in Table 1.

A comparison of our data with those from interferometry

(Begum et al., 1986), absorption (Bonse et al., 1982; Dreier et

al., 1984) and re¯ectivity (Stanglmeier et al., 1992) are shown

in Figs. 3 and 4. (We only show a few of the numerous

experimental results from the literature to avoid overcrowding

the plots.) The wiggles in the data are due to solid-state effects,

such as EXAFS. It can be seen that the agreement is quite

good. For the ®rst minimum of f 0 (at ~8980 eV), surveys of

previous experimental results give an unweighted average

value of ÿ8.54�0.62 electrons (Creagh, 1999) and a weighted

average value of ÿ8.4�0.2 electrons (Lengeler, 1994). Our

measurements give ÿ8.24�0.30 electrons, which is within the

range of the surveyed results.

5. Conclusions

This paper presents a new technique for measuring dispersion

corrections to the X-ray atomic scattering factors, namely by

analysis of the Fresnel diffraction patterns. The main advan-

tages of this technique are its simplicity and robustness. There

are no constraints on the sample environment, aside from the

necessity of it being a simple geometrical object. Thus, it is

possible to make these measurements under different sample

environments, for example, as a function of temperature or

magnetic ®elds and/or under different incident X-ray polar-

ization. Note that sample chamber windows are not a concern

in this technique. Although we used a ®ber in this study, this

technique should be equally applicable using the edge of a foil

or the edge of a thin layer of material deposited onto a plate.

Thus, the range of materials is not restricted to those that can

be made into thin ®bers. With interferometry, one is usually

restricted in the space around the sample since inter-

ferometers tend to be fairly small (~2±5 cm) devices. Their

high sensitivity requires that the environment be extremely

stable and without any thermal drifts. For example, positioning

electromagnets around the sample would be a dif®cult chal-

lenge. Furthermore, it would not be possible to make

measurements with circularly polarized X-rays because the

beam polarization would change as it travels through the

blades of the interferometer. With re¯ectivity, one is restricted

to materials that can be made into an X-ray mirror (via

deposition to a substrate or direct polishing). For coated

mirrors, it would be dif®cult to make these measurements

under different environment conditions, such as under strain

or high temperature where there would be the risk of damage

to the coating. The disadvantage of our technique is that, for

good results, the measured Fresnel patterns should contain a

large number of fringes. This puts a requirement on the

thickness of the sample and the resolution of the detection

system, which becomes harder to achieve at higher energies.

The average estimated errors in our measurement,

�0.35 electron for f 0 and �0.07 electron for f 00, are compar-

able to those stated in the literature. The largest source of

error comes from uncertainty in the thickness (or diameter)

of the sample. Aside from the determination of dispersion

corrections, another possible application of this quantitative

fringe analysis technique is element- and oxidation-state-

sensitive phase contrast imaging. Absorption edges and the

dispersion corrections are unique to each element and are

in¯uenced by the element's oxidation state. By applying

similar analysis in combination with phase tomography

(Cloetens, 1999), it should be possible to map the spatial

distribution of different elements and different oxidation

states of the same element within a complex sample. This

should provide much better sensitivity compared to absorp-

tion-based imaging techniques.
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